skip to main content


Search for: All records

Creators/Authors contains: "Reid, Scott A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 31, 2024
  2. Abstract

    Exciton and charge delocalization across π‐stacked assemblies is of importance in biological systems and functional polymeric materials. To examine the requirements for exciton and hole stabilization, cofacial bifluorene (F2) torsionomers were designed, synthesized, and characterized: unhindered (model)MeF2, sterically hinderedtBuF2, and cyclophane‐likeCF2, where fluorenes are locked in a perfect sandwich orientation via two methylene linkers. This set of bichromophores with varied torsional rigidity and orbital overlap shows that exciton stabilization requires a perfect sandwich‐like arrangement, as seen by strong excimeric‐like emission only inCF2 andMeF2. In contrast, hole delocalization is less geometrically restrictive and occurs even in sterically hinderedtBuF2, as judged by 160 mV hole stabilization and a near‐IR band in the spectrum of its cation radical. These findings underscore the diverse requirements for charge and energy delocalization across π‐stacked assemblies.

     
    more » « less
  3. Abstract

    Exciton and charge delocalization across π‐stacked assemblies is of importance in biological systems and functional polymeric materials. To examine the requirements for exciton and hole stabilization, cofacial bifluorene (F2) torsionomers were designed, synthesized, and characterized: unhindered (model)MeF2, sterically hinderedtBuF2, and cyclophane‐likeCF2, where fluorenes are locked in a perfect sandwich orientation via two methylene linkers. This set of bichromophores with varied torsional rigidity and orbital overlap shows that exciton stabilization requires a perfect sandwich‐like arrangement, as seen by strong excimeric‐like emission only inCF2 andMeF2. In contrast, hole delocalization is less geometrically restrictive and occurs even in sterically hinderedtBuF2, as judged by 160 mV hole stabilization and a near‐IR band in the spectrum of its cation radical. These findings underscore the diverse requirements for charge and energy delocalization across π‐stacked assemblies.

     
    more » « less